Learning in-depth your various options for persisting data, is very useful since most applications have to deal with persistence in some form, and increasingly in a distributed manner. Go beyond simply skimming the surface of SQL vs. NoSQL and the marketing claims different databases make about their scalability and consistency. Learn what ACID and CAP stand for and the tradeoffs involved in different persistence strategies. Learn SQL really well. Learn how to read a query plan, which is the algorithm your SQL query gets compiled into. Learn about the tradeoffs of row-based vs column-based storage. Learn how indexes work, and what a B-tree is. Learn the MapReduce pattern. Think about the tradeoffs between sending code to run everywhere your data is stored vs. moving your data to where your code is running.
The talk on "Turning the database inside-out" [0][1] by the author, Martin Kleppmann, is a fantastic intro to these dynamics, and it's something I'll always recommend to both experienced and inexperienced data modelers and backend developers.
It goes pedagogically through the way things are typically done in a relational database in such a clear way that word-for-word it's one of the best tutorials I've seen... but it also weaves a narrative of "how can this be done better/more scalably/more reliably/more flexibly-to-business-needs" in pointing to a streaming/event-sourcing architecture. You may or not need the latter right away, but it's a fantastic tool to have in your toolbox to be able to say "ah, this new requirement feels like it would benefit hugely from this architecture."
Especially for OP who's starting to think about the "why" of messaging queues, this could be a fantastically valuable first step.
Another good resource that guides one through both the philosophy (why) and technical details (how) of building a web application is Software Engineering for Internet Applications: