All planets with a diverse chemical makeup will stumble across accidental formation of a replicator molecule. It's 100% certain. That's all that's required for "life".
People have theorized even a 50 base pair segment of RNA might be capable of building exact copies of itself, either by snapping in half and auto-forming the same other half, or by other means. Since there's two sexes, it was perhaps a "halving" at that level, that early on, which led ultimately to TWO sexes, but that's a side point.
We can even predict the probability of any 50 base pair ordering. It's 1/(4^50). That's 30 zeroes in the denominator. Now consider that a single glass of water has 10^23 molecules. That's 7 orders of magnitude difference. So the amount of water you need to cross that magnitude threshold is 7. Turns out that's exactly the size of an Olympic swimming pool. 10 million cups of water.
So statistically, a planet with an ocean volume only as large as a swimming pool has the "Statistical Power" (power of large numbers) to find ANY 50 base pair combination (give or take an order of magnitude or two) Once it finds a replicator, life has started, and so has evolution. And that's guaranteed within the first minute or so, at reasonable temperatures. Now multiply that time by the average age of a planet, and you begin to realize, statistically life is guaranteed, in any chemically diverse scenario with reasonable temperatures.
Interesting argument, but nobody believes that a diverse chemical makeup is sufficient to guarantee life.
You can wave big numbers around but none of that makes a convincing argument; it's not hard to construct any number of scenarios where self replicators are started but don't lead to true life.
Also you're comparing a gram of water to a bunch of bases; H2O is not DNA.
Sure we don't have proof that all life will form from essentially "binary" data, (although technically ours is made of 4 bases, not 2), but it's almost axiomatic that life will find the simplest possible way to store information before it finds the more complex ways. Ergo DNA is almost binary, but quarternary instead. It's nearly digital.
Insofar as your H20 vs DNA comparison, I merely used water as a way to show relative "scale". That is, HOW MUCH fluid volume (relative to the order of magnitude of size of atoms) would it take to contain the requisite number of RNA. Because when it comes to probabilities of finding astronomically unlikely combinations, astronomically large numbers is key. I think in a mole of random Rubicks cubes, hundreds will be "accidentally solved" (I forgot those numbers, so check my math, on that one)
The reason I threw in the "give or take 2 orders of magnitude" caveat was precisely because I knew someone like you would accuse me of relating H20 to RNA in a way in which I didn't. Other planets will have different atoms, not necessary water-based life, but planets even the size of a swimming pool have the "numbers game" power to create life.
Are you aware that at high concentrations, DNA, RNA, and proteins all have serious problems? For example, DNA and RNA are highly charged, with strong repulsion effects, while also having large greasy areas. At the concentrations you're describing, the DNA and RNA would not be functional as we know it.
Right. The "thought experiment" math is a tight packing of theoretical RNA molecules, and not intended to be taken literally, without a dilution factor; but only to show [some] people their intuition is WAY off about the power of large numbers to "create" unlikely patterns.
For example, if you ask most people how many randomly occurring Rubiks Cubes will just be accidentally solved even with Avogrdro's number of them, their answer is usually zero; and unsurprisingly they're the same ones claiming there had to be a God to create even the initial replicator.
For this to hold, each of those water molecules in that swimming pool needs to somehow turn into a random 50 base pair chain of RNA.
Those RNA molecules are also going to be ~two orders of magnitude larger than a water molecule, so you're going to need a bigger pool...
To actually replicate, some loose ingredient molecules must also be present, and in reasonable quantities to be at hand in any given place in the pool.
The argument you are actually making is that a vessel that is filled with randomly assembled chunks of RNA not shorter than 50 base pairs each, the quantity of which equal the number of molecules of water in an Olympic pool, would contain life with probability ~1.
Now, the ocean is large, and a billion years is a long time, but I'm a long way from convinced that the chance of life is 100% on any given suitable planet.
That's a decent analysis of the things this "thought experiment" doesn't address. I'm not a chemist but I think in a sea of AT and GC pairs even mixed with water, the ability to find every random sequence possible is near certainty:
Especially when you multiply by the number of swimming pools of all ocean water (10^14) by the number of minutes of the history of Earth (10^15), and consider that the probability of the accidental 50 base pair replicator forming needs to have those 29 extra zeroes, in the numerator (not the denominator). So the likelihood, now that I add more info, has just gone up 29 orders of magnitude. lol. (BTW. the 1 minute assumption will be temperature dependent, and is a guess at how long it takes reactions to take place).
The whole thing is a rough approximation like the Drake Equation is, and each number is an estimate. If you want to attack the Thought Experiment, at it's weakest point, just question the initial assumption, which is the biggest guess of all, that some unique 50 base pair RNA can replicate itself.
People have theorized even a 50 base pair segment of RNA might be capable of building exact copies of itself, either by snapping in half and auto-forming the same other half, or by other means. Since there's two sexes, it was perhaps a "halving" at that level, that early on, which led ultimately to TWO sexes, but that's a side point.
We can even predict the probability of any 50 base pair ordering. It's 1/(4^50). That's 30 zeroes in the denominator. Now consider that a single glass of water has 10^23 molecules. That's 7 orders of magnitude difference. So the amount of water you need to cross that magnitude threshold is 7. Turns out that's exactly the size of an Olympic swimming pool. 10 million cups of water.
So statistically, a planet with an ocean volume only as large as a swimming pool has the "Statistical Power" (power of large numbers) to find ANY 50 base pair combination (give or take an order of magnitude or two) Once it finds a replicator, life has started, and so has evolution. And that's guaranteed within the first minute or so, at reasonable temperatures. Now multiply that time by the average age of a planet, and you begin to realize, statistically life is guaranteed, in any chemically diverse scenario with reasonable temperatures.